Journal of Organometallic Chemistry, 81 (1974) 107-110 © Elsevier Sequoia S A, Lausanne - Printed in The Netherlands

KINETICS OF TRANSFER OF COORDINATED CARBANIONS FROM COBALT TO MERCURY(II) IN TWO FAMILIES OF MODEL VITAMIN B12 COMPOUNDS

G TAUZHER, R. DREOS, G COSTA Istituto di Chimica, Università di Trieste, Trieste (lialy) and MICHAEL GREEN* Department of Chemistry, University of York, York (Great Britain) (Received May 20th, 1974)

Summary

Intermediates are revealed by kinetic studies on the transalkylation by mercury(II) of alkyl- and aryl-aquo-1,3-bis(diacetylmonoximeimino)propanatocobalt(III) mono cations and of alkylaquo-N,N'-ethylenebis(salicylideneiminato)cobalt(III).

Transfer of the alkyl group to Hg^{2+} from alkylcobalt corrinoid compounds [1-3, 5] and various alkylaquobis(dimethylglyoximato)cobalt complexes [4, 6, 7] (cobaloximes) appears to involve one simple step (eqn. 1). In some cases,

 $RM + Hg^{2+} \rightarrow M^{+} + RHg^{+}$

(1)

(2)

(R = alkyl, M = cobalt complex less R, i.e. cobalt + extended equatorial ligand + usually, one axial ligand, RM may be charged)

the kinetics are more complicated than implied by eqn. 1, but this is due to side reactions, e.g. coordination of Hg^{2+} to benzimidazole in the cobalamins [3], and protonation in the cobaloximes [7], as in eqn. 2. We are reporting the reac-

 $RM + H^+ \neq RMH^+$

tions of two related cobalt systems, where in contrast to the simple process 1, evidence is found for two steps involving the formation of intermediates, RMHg²⁺

An investigation has been made of the kinetics of dealkylation and dearylation by the mercury(II) ion of [RCo{(DO)(DOH)pn} H_2O]⁺ (I) and of dealkylation of RCo(salen) H_2O (II) in water. (Using the earlier rotation, RM carries a charge of +1 in the first case and 0 in the second). The reactions were followed spectro-

For correspondence

photometrically using stopped flow techniques where necessary. In every case studied, graphs of rate against $[Hg^{2+}]$ curved from linearity at high concentrations of the latter, while strictly linear relationshipe were obtained between the reciprocals of these quantities. Reactions 3 and 4 are postulated.

$$RM + Hg^{2^{+}} \neq RM \cdot Hg^{2^{+}}$$
(3)

$$RM \cdot Hg^{2^{+}} + H_{2}O \rightarrow MH_{2}O^{+} + RHg^{+}$$
(4)
If $K_{3} = k_{3}/k_{-3}$ and if $k_{4} \ll k_{3}$ then

$$\frac{-d[RM]}{dt} = \frac{k_{4}K_{3}[RM][Hg^{2^{+}}]}{1 + K_{3}[Hg^{2^{+}}]}$$

which is completely compatible with observations for $[RCo{(DO)(DOH)pn}-H_2O]^+$. In studying these compounds $[H^+]$ was varied from 0.025 to 0.7 *M*, but no evidence was found of protonation to $[RCo{(DOH)(DOH)pn}H_2O]^{2+}$ or of retardation of reaction due to process 2 taking place, as observed in the dealkylation of cobaloximes [7] and of RCo(salen)H_2O (see below).

In the case of the RCo(salen) H_2O compounds, an inverse dependence on acidity was also observed, the reciprocal of the rate being proportional to $[H^*]$ on the basis of which reaction 2 is included Then, working as before.

$$\frac{-d[RM]}{dt} = \frac{k_4 K_3 [RM] [Hg^{2*}]}{1 + K_2 [H^*] + K_3 [Hg^{2*}]}$$

which described fully the kinetics for RCo(silen)H2O

The production of MH₂O^{*} was verified spectrophotometrically, and that of the RHg^{*} species by means of the melting points of chlorides and/or iodides precipitated from concentrated reaction mixtures with excess halide ion. Tables 1 and 2 contain the data on the RM compounds and also a fluoroboron derivative, $[CH_3Co\{(DO)(DOBF_2)pn\}H_2O]^*$, in which BF₂ replaces H. In forming a detectable intermediate, namely RM·Hg²⁺, the systems here contrast with the cobalt corrinoids and cobaloximes mentioned earlier [1—8]. (Chloromethylcobaloxime forms a very stable complex with Hg²⁺ but it is different [7] in being destroyed by a second mercury(II) ion.) In the other systems [2, 6, 7] upper limits can be placed in possible K_3 terms of about 0.03 M^{-1} , if it is assumed that the highest concentrations of Hg²⁺ used in them (see ref. 6, in which highest [Hg] = 1 M) were comparable to those used here (see footnotes to Tables). The values of K_3 for I and II are considerably larger.

DAT & FOR [RCo {(DO)(DOH)pn H_2O] ^{+ a}						
R	К <u>з</u> (17 ⁻¹)	k,, (sec ⁻¹)	A 3k4 (M ⁻¹ sec ⁻¹)	n		
Me	1 18 ± 0 11	133 ±011	156 ± 001	35		
Et	1 38 ± 0 13	$0\ 00422 \pm 0\ 00033$	0 00585 ± 0 00006	8		
n-Pr	073 ± 0.17	0.00400 ± 0.00085	0 00291 = 0 00005	10		
PbCH ₂	2 41 = 0 49	0 00159 ± 0 00029	0 00383 ± 0 00009	7		
Ph	291±045	131 ± 022	382 ± 0.05	43		
Me (BF2 derivative)	3 19 ± 0 21	0 000218 ± 0 000010	0 00066 ± 0 00001	6		

TABLE 1 DATA FOR [RCo ${(DO)(DOH)pn}H_2O]^{\dagger a}$

^a Temperature 25.0 ± 0.1², except for BF₂ derivative (40.0 ± 0.1⁶) ionic strength 1.11 (using NaClO₄ or HClO₄), 2×10^{-4} N ≤ [RM] ≤ 4×10^{-4} N, 0.01 N ≤ [Hg²⁴] ≤ 0.3 N, data obtained by least squares regressions, errors are standard deviations, n is number of sets of observations

DATA FOR RCo(salen)H2O a							
R	$\frac{K_3}{(M^{-1})}$	k4 (sec ⁻¹)	K 3/ 4 (M ⁻¹ sec ⁻¹)	κ ₂	n		
Me Et	376 ± 42 351 ± 80	837 = 26 0240 = 0019	31500 ± 3700 84 ± 20	206 ± 23 213 ± 47	54 28		

TABLE 2 DATA FOR RCo(salen)H2O ^a

^a Temperature 25.0 ± 0.1⁻¹, ionic strength 1. W (using NaClO₄ or HClO₄), 2×10^{-4} M < [RM] < 4 × 10⁻⁴ W 0.005 W < [Hg²⁺] < 0.05 M 0.026 W < [H⁺] < 0.49 M, data obtained by least squares multiple regressions, errors are standard deviations, n is number of sets of data

Transmethylation occurs much more readily than transfer of other alkyl groups in the corrinoid and cobaloxime systems. The term K_3k_4 here is equivalent to k_1 in them. Like k_1 , for the corrinoids and cobaloximes, K_3k_4 reflects the ease of transalkylation or transarylation. the [RCo {(DO)(DOH)pn} H₂O]⁺ systems follow the cobaloximes [9] Ph > Me > Et > n-Pr \approx PhCH_2.

In the case of C_2H_1 , Co(salen), by working with a saturated water—methanol solution containing chloride ion, a green product C_2H_5 Co(salen)HgCl₂ was obtained (Found C, 34.4; H, 3.0; N, 4.65. Calcd C, 34.05; H, 3.0; N, 4.4%.)

From a kinetic point of view, reaction 4 could be replaced by 5.

 $RM + Hg^{2+} \rightarrow RHg^{+} + MH_2O^{+}$

Working as before, reactions 2, 3 and 5 lead to

 $\frac{-d[RM]}{dt} = \frac{k_5[RM][Hg^{2+}]}{1 + K_2[H^+] + K_3[Hg^{2+}]}$

This scheme assumes that the formation of $RM \cdot Hg^{2+}$ does not lead to dealkylation implying that the mercury atom is too remote from R to result in a reaction. This is plausible for methylcobalamin where there would be serious steric difficulties in moving Hg^{2+} from the benzimidazole to the methyl group (cf. step 1 of DeSimone et al. [3]). However, it seems extremely unlikely in the present systems where it is difficult to imagine what free energy factors could prevent migration of Hg^{2+} from an O atom to CH_3 group, for example.

References

1 H A O Hull, J M Pratt, S Risdale, F R Williams and R J P Williams, Chem Commun, (1970) 341 2 G Agnes, S Bendle, H A O Hull, F.R Williams and R J P Williams, Chem Commun, (1971) 850

(5)

110

- 3 R E. DeSimone, M W. Jenley, L. Charbonneau, S G Smith, J M Wood, H A O Hill, J M. Pratt, S Ridsdale and R.J P. Williams, Biochim Biophys. Acta, 304 (1973) 851
- 4 J Y. Kim, N Imura, T Ukita and T Kwan, Bull Chem Soc. Japan, 44 (1971) 300
- 5 N Imura, E. Sukegawa, S.K. Pan, K. Nagao, J.Y. Kim, T. Kwan and T. Ukita, Science, 172 (1971) 1248.
- 6 G N. Schrauzer, James H. Weber, T.M. Beckham and R K Y. Ho, Tetrahedron Lett , (1971) 275
- 7 A. Adın and J H. Espenson, Chem. Commun., (1971) 653.
- 8 Review on transalkylation, J Lewis, R H Prince and D A Stotler, J Inorg Nucl Chem. 35 (1973) 341 See also ref 9, pp. 73-77.
- 9 D Dodd and M D. Johnson, J. Organometal Chem, 52 (1973) 75